Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Theory of the electron and nuclear spin coherence times of shallow donor spin qubits in isotopically and chemically purified zinc oxide

Identifieur interne : 004935 ( Main/Repository ); précédent : 004934; suivant : 004936

Theory of the electron and nuclear spin coherence times of shallow donor spin qubits in isotopically and chemically purified zinc oxide

Auteurs : RBID : Pascal:10-0104173

Descripteurs français

English descriptors

Abstract

In this article, I present a theoretical study of the electron and nuclear spin coherence times of shallow donor spin qubits in zinc oxide (ZnO) at low temperature. The influence of different spin-phonon processes as well as different spin-spin processes on the spin coherence time of shallow donors in ZnO is considered, both in the case of an electron spin qubit and in the case of a nuclear spin qubit encoded on a shallow donor. It is estimated that the electron spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of microseconds, limited by the nuclear spectral diffusion process. The electron spin coherence time of an isolated indium shallow donor can be extended to few milliseconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the electron spin coherence time of an isolated indium shallow donor is only limited by a spin-lattice decoherence process. It is also estimated that the nuclear spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of milliseconds, limited by the nuclear spectral diffusion process. The nuclear spin coherence time of an isolated indium shallow donor can be extended to few seconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the nuclear spin coherence time of an isolated indium shallow donor is only limited by the cross relaxation decoherence process. This study thus shows the great potential of electron and nuclear spin qubits encoded on shallow donors in isotopically and chemically purified quasi-intrinsic ZnO for the implementation of quantum processor and/or quantum memories.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:10-0104173

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Theory of the electron and nuclear spin coherence times of shallow donor spin qubits in isotopically and chemically purified zinc oxide</title>
<author>
<name sortKey="Tribollet, J" uniqKey="Tribollet J">J. Tribollet</name>
<affiliation wicri:level="3">
<inist:fA14 i1="01">
<s1>Rue Victor Hugo</s1>
<s2>33400 Talence</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>France</country>
<placeName>
<region type="region" nuts="2">Aquitaine</region>
<settlement type="city">Talence</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">10-0104173</idno>
<date when="2009">2009</date>
<idno type="stanalyst">PASCAL 10-0104173 INIST</idno>
<idno type="RBID">Pascal:10-0104173</idno>
<idno type="wicri:Area/Main/Corpus">004954</idno>
<idno type="wicri:Area/Main/Repository">004935</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1434-6028</idno>
<title level="j" type="abbreviated">Eur. phys. j., B Cond. matter phys.</title>
<title level="j" type="main">The European physical journal. B, Condensed matter physics</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coherence</term>
<term>Cross relaxation</term>
<term>Density matrix</term>
<term>Donor center</term>
<term>Doping</term>
<term>ENDOR</term>
<term>Electron paramagnetic resonance</term>
<term>Indium additions</term>
<term>Quantum bit</term>
<term>Shallow level</term>
<term>Spin relaxation</term>
<term>Spin-phonon interactions</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Cohérence</term>
<term>Niveau peu profond</term>
<term>ENDOR</term>
<term>Centre donneur</term>
<term>Relaxation croisée</term>
<term>Dopage</term>
<term>Addition indium</term>
<term>Matrice densité</term>
<term>Interaction spin phonon</term>
<term>Relaxation spin</term>
<term>Résonance paramagnétique éléctronique</term>
<term>Oxyde de zinc</term>
<term>ZnO</term>
<term>Bit quantique</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Dopage</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this article, I present a theoretical study of the electron and nuclear spin coherence times of shallow donor spin qubits in zinc oxide (ZnO) at low temperature. The influence of different spin-phonon processes as well as different spin-spin processes on the spin coherence time of shallow donors in ZnO is considered, both in the case of an electron spin qubit and in the case of a nuclear spin qubit encoded on a shallow donor. It is estimated that the electron spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of microseconds, limited by the nuclear spectral diffusion process. The electron spin coherence time of an isolated indium shallow donor can be extended to few milliseconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the electron spin coherence time of an isolated indium shallow donor is only limited by a spin-lattice decoherence process. It is also estimated that the nuclear spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of milliseconds, limited by the nuclear spectral diffusion process. The nuclear spin coherence time of an isolated indium shallow donor can be extended to few seconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the nuclear spin coherence time of an isolated indium shallow donor is only limited by the cross relaxation decoherence process. This study thus shows the great potential of electron and nuclear spin qubits encoded on shallow donors in isotopically and chemically purified quasi-intrinsic ZnO for the implementation of quantum processor and/or quantum memories.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1434-6028</s0>
</fA01>
<fA03 i2="1">
<s0>Eur. phys. j., B Cond. matter phys.</s0>
</fA03>
<fA05>
<s2>72</s2>
</fA05>
<fA06>
<s2>4</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Theory of the electron and nuclear spin coherence times of shallow donor spin qubits in isotopically and chemically purified zinc oxide</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>TRIBOLLET (J.)</s1>
</fA11>
<fA14 i1="01">
<s1>Rue Victor Hugo</s1>
<s2>33400 Talence</s2>
<s3>FRA</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>531-540</s1>
</fA20>
<fA21>
<s1>2009</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26688</s2>
<s5>354000186668760090</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2010 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>53 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>10-0104173</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>The European physical journal. B, Condensed matter physics</s0>
</fA64>
<fA66 i1="01">
<s0>FRA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this article, I present a theoretical study of the electron and nuclear spin coherence times of shallow donor spin qubits in zinc oxide (ZnO) at low temperature. The influence of different spin-phonon processes as well as different spin-spin processes on the spin coherence time of shallow donors in ZnO is considered, both in the case of an electron spin qubit and in the case of a nuclear spin qubit encoded on a shallow donor. It is estimated that the electron spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of microseconds, limited by the nuclear spectral diffusion process. The electron spin coherence time of an isolated indium shallow donor can be extended to few milliseconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the electron spin coherence time of an isolated indium shallow donor is only limited by a spin-lattice decoherence process. It is also estimated that the nuclear spin coherence time of an isolated indium shallow donor in natural quasi-intrinsic ZnO is on the order of hundreds of milliseconds, limited by the nuclear spectral diffusion process. The nuclear spin coherence time of an isolated indium shallow donor can be extended to few seconds in isotopically and chemically purified quasi-intrinsic ZnO. In this optimal case, the nuclear spin coherence time of an isolated indium shallow donor is only limited by the cross relaxation decoherence process. This study thus shows the great potential of electron and nuclear spin qubits encoded on shallow donors in isotopically and chemically purified quasi-intrinsic ZnO for the implementation of quantum processor and/or quantum memories.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70F30</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70F70D</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70A55G</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Cohérence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Coherence</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Niveau peu profond</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Shallow level</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Nivel poco profundo</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>ENDOR</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>ENDOR</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Relaxation croisée</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Cross relaxation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Relajación cruzada</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Dopage</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Doping</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Addition indium</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Indium additions</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Matrice densité</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Density matrix</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Interaction spin phonon</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Spin-phonon interactions</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Relaxation spin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Spin relaxation</s0>
<s5>11</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Relajación spin</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Résonance paramagnétique éléctronique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Electron paramagnetic resonance</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>15</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Bit quantique</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum bit</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>067</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004935 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 004935 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:10-0104173
   |texte=   Theory of the electron and nuclear spin coherence times of shallow donor spin qubits in isotopically and chemically purified zinc oxide
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024